Producers are pushing the boundaries of traditional management strategies to achieve their high-yielding soybean goals. Best management practices help some soybean yields of NC to exceed 70bu/A while the historical statewide average yield of soybean mark 35 bu/A level. However, intensive agricultural practices may not provide long-term sustainability in increasing soybean yield levels. Achieving high yields and improving soil properties may differ substantially for each region of NC and require excellent field conditions and hence site-specific and climate-smart management strategies. Especially increasing need for agricultural products, and expensive and limited fertilizer inputs due to global issues require improvements in currently available management strategies like cover cropping and reduced or no tillage. Recently, management practices like those provide minimum disturbance, maximum soil coverage, economically profitable carbon farming, and restore or maintain soil health are critical. This research aims to develop site-specific cover crop and tillage practices where we can get the most benefit from interactions between cover crop and tillage applications to provide high economical return and enhanced soil health conditions. We will conduct plant and soil analysis including soil physical properties, microbial activities, nitrogen (N) fixation, soybean yield, and biomass. We will also conduct an economic analysis and carbon credit evaluations. To conduct this project, we will hire a graduate student for 3 years co-sponsored with this grant and startup from department support by Crop and Soil Sciences Department. We are also requesting financial support for field supplies, travel costs, and soil and plant analysis associated with the project.