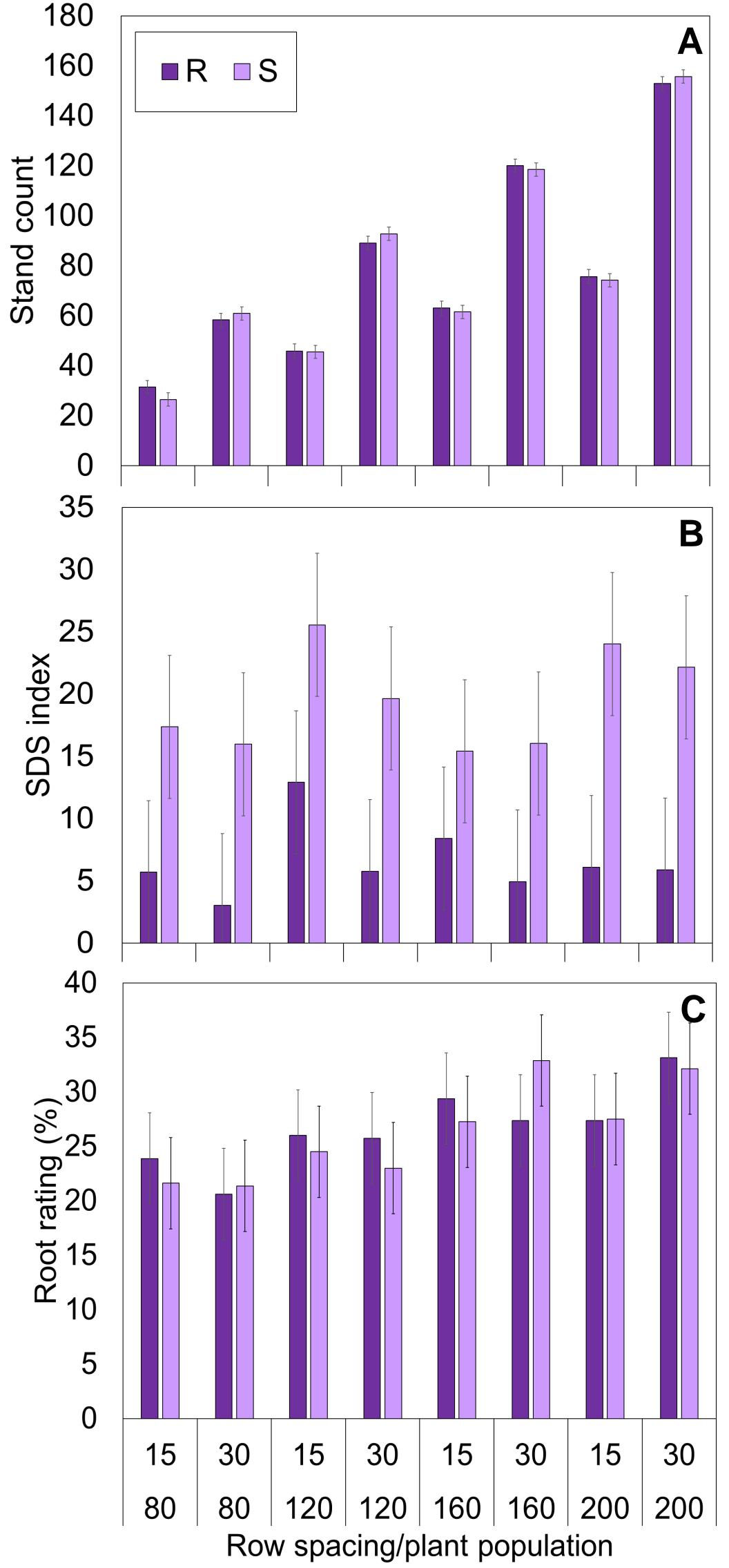
# Influence of Row Spacing, Plant Population, and Variety Selection on Sudden Death Syndrome of Soybean in Kansas and Iowa




Madison Kessler<sup>1</sup>, Nabin Dangal<sup>2</sup>, Daren Mueller<sup>2</sup>, Rodrigo B. Onofre<sup>1</sup> <sup>1</sup> Department of Plant Pathology, Kansas State University, Manhattan, Kansas. <sup>2</sup>Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa. E-mail: <u>mkessler@ksu.edu</u>



### INTRODUCTION

- *Fusarium virguliforme*, a soilborne pathogen that infects and colonizes the roots of soybeans, is the primary causal agent of soybean sudden death syndrome (SDS) in US.
- Symptoms appear at or shortly after flowering and include root necrosis, interveinal leaf



#### RESULTS

**Table 1:** Type 3 tests of fixed effects for stand count. Cult = cultivar; Pop = Plant Population; Row = Row spacing.

| Effect         | Num DF | Den DF | F Value | Pr > F |
|----------------|--------|--------|---------|--------|
| CULT           | 1      | 95     | 0.01    | 0.915  |
| POP            | 3      | 95     | 639.19  | <.0001 |
| CULT*POP       | 3      | 95     | 0.4     | 0.7557 |
| ROW            | 1      | 7      | 1959.03 | <.0001 |
| CULT*ROW       | 1      | 95     | 2.7     | 0.1034 |
| <b>POP*ROW</b> | 3      | 95     | 74.36   | <.0001 |
| CULT*POP*ROW   | 3      | 95     | 0.42    | 0.7357 |

chlorosis and necrosis, flower abortion, reduced number of pods and seed size, and premature defoliation.

 Yield losses typically range from 5-15%, with highly infested fields reporting losses up to 100%.



Fig. 1: Progression of SDS leaf chlorosis and necrosis.



**Table 2:** Type 3 tests of fixed effects for SDS Index. Cult = cultivar; Pop = Plant Population; Row = Row spacing.

| Effect       | Num DF | Den DF | F Value | Pr > F |
|--------------|--------|--------|---------|--------|
| CULT         | 1      | 98     | 75.06   | <.0001 |
| POP          | 3      | 98     | 3.08    | 0.0309 |
| CULT*POP     | 3      | 98     | 1.23    | 0.304  |
| ROW          | 1      | 7      | 2.46    | 0.1609 |
| CULT*ROW     | 1      | 98     | 0.17    | 0.6817 |
| POP*ROW      | 3      | 98     | 0.73    | 0.5361 |
| CULT*POP*ROW | 3      | 98     | 0.15    | 0.9264 |

**Table 3:** Type 3 tests of fixed effects for SDS root rot. Cult = cultivar; Pop = Plant Population; Row = Row spacing.

**Fig. 2a:** Symptomatic SDS soybean plant (left) compared to healthy soybean plant (right). **Fig. 2b:** Visual SDS symptoms from Shawnee County, KS from 2022.

### OBJECTIVE

 Evaluate the influence of agronomic practices on soybean sudden death syndrome through on-farm trials evaluating row spacing, plant population, and variety selection.

## MATERIALS AND METHODS

- Plot Size: 30 ft with 15-inch and 30-inch row spacing with 4 repetition with RCBD.
- Plant population: 80k, 120k, 160k, and 200k seeds/acre. • Varieties: Resistant (R) and susceptible (S) **Inoculum:** F. virguliforme-infested sorghum  $\bullet$ grain was applied in-furrow at planting. Data collection – Rossville, KS and Topeka, KS during the 2023 season. • Pre-planting: Soybean cyst nematode (SCN) eggs counted • V2: Live plants counted. • R4: Root rot severity was estimated on a 0-100% scale. • R6: Foliar SDS symptoms (FDX) assed using SIU's rating scale. • R8: Yield adjusted to 13% moisture. Post-harvest: SCN J2+egg count

**Fig. 3**. Effect of row spacing and plant population on (**A**) stand count, (**B**) SDS Index, and (**C**) SDS root rot.

| Effect       | Num DF | Den DF | F Value | <b>Pr &gt; F</b> |
|--------------|--------|--------|---------|------------------|
| CULT         | 1      | 98     | 0.2     | 0.656            |
| POP          | 3      | 98     | 17.8    | <.0001           |
| CULT*POP     | 3      | 98     | 0.75    | 0.524            |
| ROW          | 1      | 7      | 1.06    | 0.3377           |
| CULT*ROW     | 1      | 98     | 1.29    | 0.2595           |
| POP*ROW      | 3      | 98     | 2.95    | 0.0363           |
| CULT*POP*ROW | 3      | 98     | 1.33    | 0.2676           |

Stand count and plant population are great predictors for SDS root rot

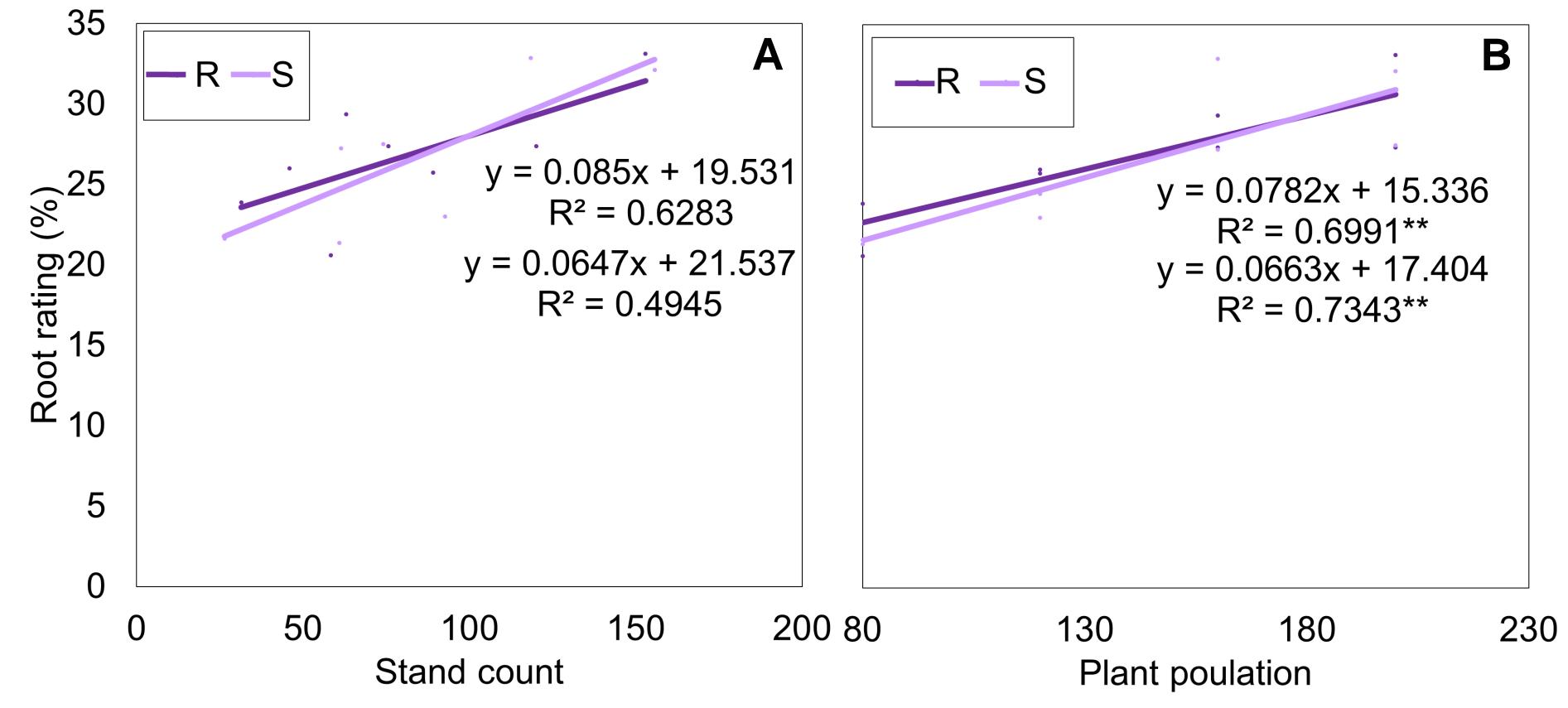



Fig. 4. Effect of (A) stand count and (B) plant population on SDS root rot.

#### CONCLUSIONS

- Resistant cultivars reduced SDS index and increase yield (data not shown).
- There was an increase in root rot ratings with higher plant populations.
- The cultivar, plant population, and row spacing interaction was not significant.