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Final report (January 2024 to December 2024) 
 

Project funded by North Central Soybean Research Program  

 

Project title - Field phenotyping using machine learning tools integrated with genetic mapping  

to address heat and drought induced flower abortion in soybean.  

 

Participating institutions – Texas Tech University, Kansas State University, University of 

Missouri, and University of Tennessee.   

 

Goals & Objectives  

Long-term Goal – Develop soybean cultivars with 20 to 30% lower flower abortion under 

favorable to challenging environmental conditions, leading to about 10-15% increase in yield 

potential.  

 

Objectives (Year 2)  

• Continue to explore the genetic diversity in flower 

abortion under different soil moisture and climatic 

conditions using a diverse set of landraces and elite 

genotypes. 

• Improve the image-based field phenotyping system and 

deep-learning tools to document temporal dynamics in 

flower abortion and pod retention in diverse soybeans 

grown under field conditions. 

• Identify molecular mechanisms controlling flower 

abortion under diverse climatic conditions. 

 

Objective 1 - Explore the genetic diversity in flower 

abortion under different soil moisture and climatic 

conditions using a diverse set of landraces and elite 

genotypes 

Texas Tech University: 

The 50 genotypes were planted on June 5th under two 

distinct irrigation regimes. One field was irrigated to 

maintain 80% evapotranspiration (ET) throughout the 

experiment, while the 40% ET regime was implemented 

only during the flowering phase. Flowering began on 

July 11th (Figure 1). Both imaging and manual flower 

counting were conducted until the end of the flowering 

period every three days. Each plot was identified with 

QR code label. Pod imaging began on August 27th and 

continued weekly until all lines had reached the R6/R7 

stage. Harvesting was completed across the locations 

and sample processing is completed for agronomic data. 

University of Missouri: 

Figure 1. Plot identified with QR code labels. 

Texas Tech University 

Credit: Dr. Juliana Espíndola 

 

Figure 2. Soybean panel at flowering stage.  

University of Tennessee.  

Credit: Dr. Avat Shekoofa’s lab 
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Planted 50 genotypes on May 22nd and Harvested on 9-11-2024 

University of Tennessee: 

Planted 50 genotypes on May 30th and Harvested on 9-9-2024 

Kansas State University: 

Planted 50 genotypes on May 29th. and Harvested on 8-31-2024 

 

All locations (Figures 2 and 3) followed the same protocol developed by Texas Tech University 

for manual flower counting and imaging to ensure uniform and high-quality data collection. 

 

Results: 

The results from 11 diverse lines in Texas Tech 

University and the University of Missouri (Figure 

4) showed that lines IA3023, PI556511, HS6-3976, 

and CL0J173-6-8 had the lowest flower abortion 

rates in Texas, while PI552538, PI556511, LG05-

4464, and CL0J173-6-8 had the lowest rates in 

Missouri, indicating different genetic responses 

across environments. Interestingly, PI556511, 

LG05-4464 and CL0J173-6-8 were common to 

both locations, having lower flower abortion 

indicating potential genetic sources for developing 

cultivars with wider adaptation and reduced rate of 

abortion. 

 

Texas Tech, the lines PI535648, HS6-3976, LG05-4832, CL0J173-6-8 and LD02-9050 exhibited 

lower flower abortion percentage than in Missouri and Kansas, likely due to irrigation applied in 

Texas that mitigated the stress of higher 

temperatures, helping to maintain flower 

and pod development without excessive 

abortion. The fluctuating weather in 

Missouri, including waterlogging, fungal 

infections, or high humidity, could have 

contributed to higher stress levels. 

 

At Texas Tech University (Figure 5) the 

same lines were grown under drought 

conditions (40% ET). As expected, higher 

flower abortion rates were observed for 

most lines under drought, but lines 

PI534648, K17-6388, LG05-4832 

PI533654, and LD02-9050 recorded 

lower level of abortion under stress 

conditions. This could be explained by 

adaptive drought tolerance mechanisms, 

including enhanced root growth in 

Figure 3. Soybean panel at flowering stage.   
Kansas State University.  

Credit: Dr. William Schapaugh 

Figure 4. Flower abortion (%) results of 11 lines from 

Texas Tech University, Kansas State University, and 

University of Missouri. 
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response to moderate water stress (40% 

ET), enabling these lines to retain flowers 

as a survival strategy.  

 

Additional data on maturity days was 

collected across all locations (Figure 6), 

with values ranging from 98 to 114 days. 

Lodging scores varied from 0 to 2.5, but 

majorly confined to 0 to 1.5 (Figure 7), 

indicating that these lines are well-suited 

for phenotyping using the imaging 

platform and for breeding purposes. 

Additionally, no significant differences in 

yield (Figure 8) were observed among the 

lines within each location, except in 

Tennessee, where lines CL0J173-6-8, 

K17-6388, IA3023, LD02-9050, 

PI533654, and PI534648 demonstrated 

higher yields. Across locations, Kansas recorded higher yields for most lines followed by Texas. 

 

 

 

 

 

 

 

 

 

Figure 5. Flower abortion in 11 lines cultivated 

under irrigated and drought conditions at Texas 

Tech University.   

Figure 6. Maturity day of the 11 lines 

produced in Texas, Missouri, Tennessee, 

and Texas.   

Figure 7. Lodging score of the 11 lines 

produced in Texas, Missouri, Tennessee, 

and Texas.   
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Plant height (Figure 8) was consistently greater for all lines grown in Missouri, while the same 

lines exhibited shorter heights in Texas. This suggests that plant height is not a determinant of 

grain production for these lines. Moreover, the high temperatures experienced in Texas (~100°F) 

did not significantly reduce yields, likely due to the mitigating effects of good soil structure, proper 

nutrition, irrigation, and effective crop management practices. Lastly, the 100-seed weight results 

highlight that Kansas, Texas, and Tennessee recorded higher seed weights for most lines. 

 

Figure 8.  Yield (bu/ac), Plant Height (cm), and 100-Seed Weight (g) of 11 lines grown in Texas, 

Missouri, Tennessee, and Kansas. Bars of the same color indicate no statistical differences across lines 

tested within each location. Bars with same uppercase letters indicate no statistical differences across 

locations for each line according to the Scott-Knott test (p < 0.05). 
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Two greenhouse experiments were performed in 2024 in Tennessee and Texas. In University of 

Tennessee plants were assigned to one of the two treatments: severe stress (SS) or well-watered 

(WW). Within each line, five plants were subjected to stress, while three under well-watered 

condition, serving as a reference for calculating the normalized transpiration rate (NTR). Daily 

flower counts commenced at the onset of flowering and continued until flowering ceased. 

 

The University of Tennessee collected data in 

2024 from eight contrasting soybean lines 

exhibiting high and low flower abortion rates 

(Figure 9), selected based on the field data 

collected in Summer 2023. They conducted a 

greenhouse experiment with four lines known for 

high flower abortion (PI 567638, PI 603583, PI 

567398, and PI 423926) and four lines 

characterized by low flower abortion (PI 506862, 

PI 80837, PI 437690, and PI 548318) to investigate 

the impact of severe drought conditions on flower 

dynamics (Figure 10). 

 

In Figure 10, three high flower abortion lines—PI 

567398, PI 567638, and PI 603583—showed 

pronounced sensitivity to severe water stress. In 

contrast, the low flower abortion line PI 548318 

stood out, producing the highest number of flowers under the severe stress treatment. Interestingly, 

despite the severe stress conditions, some lines managed to produce around 100 flowers during the 

flowering phase, with most of these being low flower 

abortion lines. To build on these findings, a second trial 

will be conducted under moderate stress conditions to 

better assess flower abortion, as the severe stress 

caused unrealistically high levels of flower loss. 

 

In Texas Tech University a small trial in a greenhouse 

was conducted to study flower dynamics per node in 

two soybean lines. Significant differences were 

observed between the nodes (Figure 11). For K17-

6388, 27% and 21% of the total flowers were located 

on the first and second nodes, respectively. In contrast, 

William 82 showed a more even distribution of flowers 

across nodes 1 to 4, with 13%, 18%, 10%, and 12%, 

respectively. Next year, this trial will be expanded to 

field conditions and tested on the high and low flower 

abortion lines selected from the 2023/2024 seasons. 

The study will examine flower dynamics per node 

under contrasting irrigation regimes (80% and 40% 

ET) and contrasting genotypes, aiming to better 

understand soybean flowering dynamics per node as well as pods. 

Figure 9. Soybean panel at flowering stage.  

University of Tennessee.  

Credit: Dr. Avat Shekoofa’s lab 

Figure 10. Flowering dynamics of high 

(PI 567638, PI 603583, PI 567398, and 

PI 423926) and low (PI 506862, PI 

80837, PI 437690, and PI 548318) 

abortion Soybean lines under well-water 

and severe stress conditions. 
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Objective 2 – Improve the image-based field phenotyping 

system and deep-learning tools to document temporal 

dynamics in flower abortion and pod retention in diverse 

soybeans grown under field conditions. 

All locations acquired an RC car crawler (Figure 12), which 

operates at a slower speed (40s per 0.3 meters) than the model 

used last year to ensure improved and higher quality image 

capture. As with the previous year, GO PRO Hero 11 cameras 

were mounted, with two to four cameras deployed to capture 

images of the entire height of the plants. The platform was able 

to navigate effectively even when the rows were covered by 

leaves, with the compact size of the RC car having minimal 

disturbance to the plants. 

 

Training of the Machine learning model – flower tracking 

In the initial stages of the project, the model was trained to 

detect flowers as a single class without distinguishing between 

different stages of the flowers. However, as the project is 

evolving, it is becoming clear that 

distinguishing between new flowers and 

old flowers can be more helpful (Figure 

13) to avoid or reduce double counts.  

 

Transitioning from a single-class to a two-

class model allows for more nuanced 

analysis. By classifying flowers into two 

distinct categories. The model can provide 

more detailed information on the stage-by-

stage flower counts, potentially enabling 

more accurate predictions of total and 

aborted flowers. 

Figure 11. Soybean flowering 

dynamics of two lines 

cultivated in greenhouse trials. 

Tukey's test (p < 0.05): 

distinct lowercase letters 

differ between nodes within 

the same line, while distinct 

uppercase letters differ 

between the same node across 

lines. 

Figure 12. RC car crawler mounted with GoPro 

Cameras. Texas Tech University 

Credit: Dr. Juliana Espíndola 
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Challenges in Two-Class Prediction: While two-class prediction offers significant advantages, it 

also presents several challenges. Labeling data for two distinct classes requires precise definitions 

of these stages and consistent labeling across the dataset. This process is more complex than single-

class labeling, as each flower must be accurately categorized. Training the model to differentiate 

between new and old flowers demands a larger and more diverse dataset. The model must 

recognize subtle differences in flower appearance, which can be influenced by factors like lighting, 

angle, and the plant's overall condition. The accuracy of the model's classification is highly 

dependent on the quality of the training data and the model's robustness. Misclassifications are 

possible, particularly when the visual cues distinguishing between the two 

classes are ambiguous. 

 

Relabeling Progress: As part of the transition to two-class prediction, the 

original videos are being relabeled to reflect the new classification scheme. 

This relabeling process is in progress, and each flower instance in the 

original dataset is reviewed to determine whether it should be classified new 

or old. This process involves a combination of manual labeling and 

automated tools. A quality control protocol has been established to maintain 

consistency and accuracy in the relabeling process. This involves cross-

checking labeled data with Dr. Juliana Espíndola (specialist in soybean 

flower morphology) to ensure that the labels are correct and consistent 

across the dataset. 

 

Implications and Future Work: The shift to two-class prediction enables 

more detailed analysis and potentially leads to better counting estimates. 

However, the success of this approach depends on the accuracy of the 

model. As we continue to refine the model, ongoing evaluation and 

adjustment will be necessary. Future work may involve exploring the 

potential for further classification, such as distinguishing flower clusters, 

when identifying the number of flowers per node is not feasible. . 

Flower tracking has been tested using several algorithms, including 

DeepSORT, Byte Track, OC-SORT, and SORT. Among these, OC-SORT 

and SORT demonstrated the most promising results based on tests 

conducted with videos from all locations. Notably, the SORT algorithm 

achieved a Multi-Object Tracking Accuracy (MOTA) of 0.964 (Table 1), 

making it the chosen method for flower tracking in the 2024 videos. 

However, testing with the 2024 videos has not yet commenced due to the large volume of data 

being uploaded to our Amazon cloud (AWS). Currently, all participating partners are in the process 

of uploading their videos.  

 

Table 1. Tracking algorithms accuracy results for soybean flower count. 

Results R2 Mota Total IDSW Total FN  

OC-SORT 0.998 0.707 865 5379  

Videos Ground Truth Count Output Count Mota IDSW FN  

Kansas 38 43 0.80 7 208  

Texas_2 94 101 0.46 57 918  

Figure 13. Soybean 

flowers classified 

as new (red box) 

and old (yellow 

box). 

Credit: Dr. Julian 

Espíndola 
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Texas_2 81 71 0.81 21 237  

UTK 292 286 0.82 162 1739  

Missouri 453 456 0.65 618 2277  

Results R2 Mota Total IDSW Total FN  

SORT 0.984 0.964 711 372  

Videos Ground Truth Count Output Count Mota IDSW FN  

Kansas 38 44 0.99 2 4  

Texas_2 94 87 0.99 7 3  

Texas_2 81 78 0.96 15 36  

UTK 292 257 0.99 87 67  

Missouri 453 479 0.89 600 262  

       
Training of the Machine learning model – Pods 

Pod Detection/Segmentation 

Recognizing the intricate shape of soybean pods, we have opted for an instance segmentation 

method (Figure 14), as opposed to bounding box object detection, for the task of identifying and 

counting the pods in a frame. The instance 

segmentation approach enables us to obtain 

precise segmentation masks of the pods, 

ensuring a more accurate representation of 

their complex structures.  

 

We selected images of plants around the R6/R7 

stage, which we visually found to be best for 

counting the pods. Using images from the 

R6/R7 stage, we did a first round of annotation 

for approximately 50 images/frames. We 

marked as “pod” all visible fragments of a pod, 

without specifically keeping track of fragments 

that belong to the same occluded pod, when 

applicable. We trained a Mask R-CNN model 

on the annotated images and visually assessed 

its performance. The model was able to detect 

pods, but it identified individual fragments of 

occluded pods as distinct “pods”, given how 

the training images were annotated. As our 

goal is to count pods in a video, this could lead 

to an artificially inflated number of pods. To 

mitigate this issue, we subsequently designed 

an annotation scheme in which fragments of an 

occluded pod are annotated together as just one 

pod. We annotated approximately 300 

images/frames with the new annotation scheme 

and trained another model.  

 

Figure 14. Pod segmentation method for pod 

detection. 

Kansas State University 
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The images in Figure 14 are examples of predictions made by the model trained using annotations 

performed with the new scheme that takes occlusions into account. These images are used for 

testing the model and have not been used for training the model.  

The revised model can accurately detect many of the actual pods, including some occluded pods. 

Given the complexity of the task at hand and the relatively small number of images used to train 

the model, it is expected that the detection can be significantly improved with a larger number of 

images, especially in the case of clusters of pods and 

occluded pods (which are both less represented in 

the dataset compared to the more visible, less 

crowded pods).  

 

Pod Detection and Tracking 

To avoid double-counting pods that appear in 

multiple frames in a video, we have also worked on 

pod tracking informed by pod detection. Towards 

this goal, we have trained a base Faster R-CNN 

architecture and subsequently used the Faster R-

CNN detection model to track the pods using 

tracking methods such as SORT, OC-SORT and 

Byte-SORT. As the tracking model is highly 

dependent on the detector, we are also training a 

YOLO-v8 model for pod detection and the best 

model between Faster R-CNN and YOLO-v8 will 

ultimately be used in our detection/tracking system. 

To facilitate evaluation of the tracking models, we 

are annotating 4 videos using a tool called CVAT. 

Each video has a resolution of 1080x1920 at 15 

frames per second. It is expected that the annotation 

of these videos will result in an adequate amount of 

data for proper evaluation of the tracking models. 

All participating locations are finishing imaging 

pods at R6/R7 stage and will upload them into the 

Amazon cloud (AWS). After all locations obtain 

videos (for pod and flowers) processing of the 

collected and uploaded videos will be initiated to 

capture flower and pod counts.  

 

Preliminary Results: Two contrasting lines (Figure 

15), one with high flower abortion (K17-6388) and 

one with low flower abortion (IA3023), were tested 

using machine learning models for flower and pod 

counts. The results revealed a significant difference 

between IA3023 and K17-6388, consistent with 

observations from manual counts. Additionally, the 

model successfully detected no significant 

differences between the two irrigation regimes 

Figure 15. Manual counts and Machine 

Learning model predictions for soybean 

flowers and pods from the Texas Tech 

University trial. Tukey test (p<0.05): 

distinct uppercase letters differ between 

lines and between irrigation regimes. 
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applied in the Texas Tech experiment for these two lines, which aligned with manual count 

observations. For pod counting, the model similarly identified no differences between the 

irrigation regimes, as reflected in the manual counts. This initial testing of the models for field-

based counts demonstrates their great potential for predicting flower abortion in the future. Both 

models will undergo further improvement, as outlined earlier, to enhance accuracy and precision. 

The models are in the process of re-training based on this first counting to improve accuracy before 

counting all the 50 lines videos. Next year, imaging both sides of the row are expected to increase 

the detection and counting of flowers and pods, addressing current limitations.  

 

Objective 3 - Identify molecular mechanisms controlling flower abortion under diverse 

climatic conditions. 

In Texas Tech University, to investigate genetic control and variation in flower abortion in 

soybean, we selected two contrasting accessions, PI567638 and PI506862, based on 2023 and 2024 

field data (Figure 16). PI567638 (high abortion; HA) exhibited a high flower abortion rate of up 

to 70%, while PI506862 (low abortion; LA) showed a significantly lower rate of around 26%. 

Flower tissues at different developmental stages (buds, partially open flowers, fully open flowers, 

and post-anthesis flowers) were collected from both accessions under field conditions for RNA 

sequencing. Principal component analysis (PCA) of four replicates revealed a high degree of 

concordance between samples. Notably, the analysis showed distinct clusters, with flower buds 

and post-anthesis flowers grouping together, while partially open and fully open flowers formed a 

separate cluster, highlighting stage-specific transcriptomic profiles. The analysis identified 1,223 

differentially expressed genes (DEGs) in buds, 1,220 DEGs in closed petals, 1,140 DEGs in open 

flowers, and 4,292 DEGs in dry flowers between the two genotypes. Genes associated with floral 

development (Figure 17) were predominantly upregulated in the low-abortion genotype, while 

genes negatively regulating floral development were highly expressed in the high-abortion 

genotype. Key genes regulating flower development and abortion include FLOWERING LOCUS 

C (FLC), MADS AFFECTING FLOWERING (MAF), TERMINAL FLOWER1 (TFL1), CDK-

Figure 16. Results of Flower/Pod counts and flower abortion percentages of contrasting 

lines (high and low flower abortion) from field 2023 /2024. 
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regulating FLOWERING LOCUS M, DAD1, AIPP3 (associated with flowering inhibition), ASP1, 

GI, AHL20, FLAVIN-BINDING, COL2, CONSTANS (CO), PRR5, BSMT1, AGAMOUS-Like 

15 (AGL15), AGL20, and GA20OX2. 

 

 

 

Furthermore, cluster analysis of DEGs identified five major clusters (Figure 18). Comparison 

between LA_Buds with HA_Buds, we identified significant upregulation in C3, wherein genes 

associated with Pectin catabolism were significantly upregulated. Pectin is an essential 

biomolecule that acts as structural component (glue) for cell adhesion. However, further 

exploration and validation of these RNA-Seq findings is required to understand the process of 

flower abortion in soybean.    

  

Figure 17. Principal component analysis (PCA) plots showing concordance with tissue 

type as indicator of high-quality data.  
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Figure 18. Heat map showing 

differential gene expression in various 

stages of flower development in high 

and low abortion genotypes.  

 


