KANSAS STATE IVERSITY

Department of Agronomy

Salina Raila, Hannah Buessing, Sarah Lancaster, Kraig Roozeboom, Gregg Ibendahl

Introduction

- Weeds are one of the main problems in soybean (Glycine max (L.) Merr.) production (Datta et. al., 2017).
- Palmer amaranth (Amaranthus palmeri), waterhemp (Amaranthus tuberculatus), common cocklebur (Xanthium strumarium), and foxtail (Setaria species spp.) are common and troublesome weeds in this soybean' (Van Wychen 2019).
- There is a trend of planting soybean earlier (Ciampitti et. al., 2017), so there is a potential need to modify weed management practices.

Pe

Results

Figure: 1 Percent weed control of a) Palmer amaranth at Manhattan, b) Waterhemp at Ottawa, c) Cocklebur at Parsons, and d) Foxtail at Scandia. Auth, Authority MTZ; Dime, Dimetric Charged; Early, early-planted soybean;

Planting Date, Row Spacing, and Herbicide Program Influence on Weed Management in Soybean

Objective

• To evaluate the effect of planting date and row spacing on residual herbicide use in soybean

Methods

- Four locations in 2023 (Table 1).
- soybean were planted using John Deere split-row vacuum planter, with 38-cm and 76-cm row spacing.
- Treatments were arranged in split-block design with planting date as main plot.
- Row spacing and herbicide treatments randomized with planting date (Table 2).
- Weed-free and non-treated controls.
- Plots were 9-m by 3-m, replicated four times. Herbicides were applied using a CO₂-pressurized
- nozzle, calibrated to deliver 187 L ha⁻¹.

Location	Variety	Early Planting Date	Late Planting Date
Manhattan	GH4093 E3	4/14	5/22
Ottowo	CH1133 E3	1/21	5/2/

Late, late-planted beans; No_resid, Enlist One + Roundup Powermax 3; With_resid, Enlist One + Roundup Powermax 3 + Dual II Magnum. Letters represent differences according to Tukey HSD test (a=0.05).

Figure 2. Weed biomass at R7 growth stage of soybean at a) Manhattan, b) Ottawa, c) Parsons, and d) Scandia. Auth, Authority MTZ; Dime, Dimetric Charged; Early, early-planted beans; Late, late-planted soybean. Letters represent differences according to the Tukey HSD test (α =0.05).

Data collection and analysis

- Percent weed control was estimated visually every 4 weeks after herbicide application.
- Weed biomass was collected at R7 soybean in 0.5 m² area.
- Grain moisture, test weight, and yield per plot were determined at soybean harvest.

Parameters	Manhattan (a)	Ottawa (b)	Parsons (c)	Scandia (d)
Percent Weed Control	Authority MTZ had greater	Waterhemp control by	Cocklebur control by both	Foxtail control by both post-
(Figure 1)	Palmer amaranth control in	Authority MTZ and Dimetric	pre-emergent herbicides was	emergence herbicide
	early-planted soybean.	charged were similar for both	similar for both early- and	programs was similar for both
		planting dates.	late-planted.	planting dates.

Discussion

•	Data	were	subjected	to	analysis	of	variance	
	appro	priate	for treatment	nt si	tructure w	ith r	replication	Biomass a
	as a r	andom	variable.				ophoadon	(Figure 2)

• Data were presented according to interactions as appropriate, and means were separated using Tukey's Honestly Significant Difference (α =0.05).

Literature Cited

- Datta et al., 2017. Crop protection, 95, 60-68.
- Van Wychen 2019. Weed Science Society of America
- Ciampitti et. al., 2017. Extension Agronomy, eUpdate, Kansas State University Issue 626.

		-	•	
Biomass at R7	Both herbicides had similar	Both herbicides had similar	Cocklebur biomass was	Foxtail biomass was similar
(Figure 2)	biomass at both planting dates.	biomass at both planting	similar for both planting dates	for both pre-emergent
		dates.	and both pre-emergent	herbicides at both planting
			herbicides.	dates.
Soybean Yield	Late-planted soybean yield was	Late-planted soybean yield	Trends are that late-planted	Yields were greatest in
(Figure 3)	greater than early-planted.	was greater than early-	soybean produced greater	soybean planted late in 38-
		planted.	yield in 38-cm spacing and	cm rows and were least in
			early-planted soybean yielded	those planted early in 72-cm
			more in 72-cm spacing.	row spacing.

Calculate canopy coverage.

Acknowledgments Conclusion Future Work	Acknowledgments	Conclusion	Future Work
--	-----------------	------------	-------------

- My lab mates Alec Adam, Wade Burris, and Igor Rezende Lima helped me with the data collection.
- Funding was provided by the Kansas Soybean Commission.
- Travel award was provided by the Kansas State Graduate School and NCWSS.
- There were few differences in weed control except for Authority early and Estimate production Palmer weed seed OŤ Authority late in Manhattan. amaranth and waterhemp.
- Weed control was not related to the effects of planting date and row spacing on soybean yield. Partial budget analysis.